《大數據分類模型及市場專題模型實戰(zhàn)》課綱(2-3天-高級)
《大數據分類模型及市場專題模型實戰(zhàn)》課綱(2-3天-高級)詳細內容
《大數據分類模型及市場專題模型實戰(zhàn)》課綱(2-3天-高級)
大數據分析與挖掘綜合能力提升實戰(zhàn)
【課程目標】
本課程為高級課程,培訓的內容是繼中級課程之后學習的,同時提供了更復雜的數據模型來解決實際工作中的商業(yè)決策問題。
本課程面向高級數據分析人員,以及系統(tǒng)開發(fā)人員。
本課程核心內容為數據挖掘,分類預測模型,以及專題模型分析,幫助學員構建系統(tǒng)全面的業(yè)務分析思維,提升學員的數據分析綜合能力。
本課程覆蓋了如下內容:
數據建模過程
分類預測模型
分類模型優(yōu)化思路
市場專題分析模型
本系列課程從實際的業(yè)務需求出發(fā),結合行業(yè)的典型應用特點,圍繞實際的商業(yè)問題,對數據分析及數據挖掘技術進行了全面的介紹(從數據收集與處理,到數據分析與挖掘,再到數據可視化和報告撰寫),通過大量的操作演練,幫助學員掌握數據分析和數據挖掘的思路、方法、表達、工具,從大量的企業(yè)經營數據中進行分析,挖掘客戶行為特點,幫助運營團隊深入理解業(yè)務運作,以達到提升學員的數據綜合分析能力,支撐運營決策的目的。
通過本課程的學習,達到如下目的:
熟悉建模的一般過程,能夠獨立完成整個預測建模項目的實現。
熟練使用各種分類預測模型,以及其應用場景。
熟悉模型質量評估的關鍵指標,掌握模型優(yōu)化的整體思路。
熟練掌握常用市場專題分析模型:
學會做市場客戶細分,劃分客戶群
學會實現客戶價值評估
學會產品功能設計與優(yōu)化
掌握產品精準推薦模型,學會推薦產品
熟悉產品定價策略,尋找產品最優(yōu)定價
【授課時間】
2-3天時間
【授課對象】
業(yè)務支撐部、運營分析部、數據分析部、大數據系統(tǒng)開發(fā)部等對業(yè)務數據分析有較高要求的相關人員。【學員要求】
每個學員自備一臺便攜機(必須)。
便攜機中事先安裝好Microsoft Office Excel 2013版本及以上。
便攜機中事先安裝好IBM SPSS Statistics v24版本及以上。
注:講師可以提供試用版本軟件及分析數據源。
【授課方式】
數據分析基礎 + 方法講解 + 實際業(yè)務問題分析 + 工具實踐操作
采用互動式教學,圍繞業(yè)務問題,展開數據分析過程,全過程演練操作,讓學員在分析、分享、講授、總結、自我實踐過程中獲得能力提升。
【課程大綱】
數據建模過程
預測建模六步法
選擇模型:基于業(yè)務選擇恰當的數據模型
屬性篩選:選擇對目標變量有顯著影響的屬性來建模
訓練模型:采用合適的算法對模型進行訓練,尋找到最合適的模型參數
評估模型:進行評估模型的質量,判斷模型是否可用
優(yōu)化模型:如果評估結果不理想,則需要對模型進行優(yōu)化
應用模型:如果評估結果滿足要求,則可應用模型于業(yè)務場景
數據挖掘常用的模型
數值預測模型:回歸預測、時序預測等
分類預測模型:邏輯回歸、決策樹、神經網絡、支持向量機等
市場細分:聚類、RFM、PCA等
產品推薦:關聯分析、協(xié)同過濾等
產品優(yōu)化:回歸、隨機效用等
產品定價:定價策略/最優(yōu)定價等
屬性篩選/特征選擇/變量降維
基于變量本身特征
基于相關性判斷
因子合并(PCA等)
IV值篩選(評分卡使用)
基于信息增益判斷(決策樹使用)
模型評估
模型質量評估指標:R^2、正確率/查全率/查準率/特異性等
預測值評估指標:MAD、MSE/RMSE、MAPE、概率等
模型評估方法:留出法、K拆交叉驗證、自助法等
其它評估:過擬合評估
模型優(yōu)化
優(yōu)化模型:選擇新模型/修改模型
優(yōu)化數據:新增顯著自變量
優(yōu)化公式:采用新的計算公式
模型實現算法(暫略)
好模型是優(yōu)化出來的
案例:通信客戶流失分析及預警模型
分類預測模型
問題:如何評估客戶購買產品的可能性?如何預測客戶的購買行為?如何提取某類客戶的典型特征?如何向客戶精準推薦產品或業(yè)務?
分類模型概述
常見分類預測模型
邏輯回歸模型
邏輯回歸模型原理及適用場景
邏輯回歸的種類
二項邏輯回歸
多項邏輯回歸
如何解讀邏輯回歸方程
帶分類自變量的邏輯回歸分析
多元邏輯回歸案例:如何評估用戶是否會購買某產品(二元邏輯回歸)
案例:多品牌選擇模型分析(多元邏輯回歸)
分類決策樹(DT)
問題:如何預測客戶行為?如何識別潛在客戶?
風控:如何識別欠貸者的特征,以及預測欠貸概率?
客戶保有:如何識別流失客戶特征,以及預測客戶流失概率?
決策樹分類簡介
案例:美國零售商(Target)如何預測少女懷孕
演練:識別銀行欠貨風險,提取欠貸者的特征
構建決策樹的三個關鍵問題
如何選擇最佳屬性來構建節(jié)點
如何分裂變量
修剪決策樹
選擇最優(yōu)屬性
熵、基尼索引、分類錯誤
屬性劃分增益
如何分裂變量
多元劃分與二元劃分
連續(xù)變量離散化(最優(yōu)劃分點)
修剪決策樹
剪枝原則
預剪枝與后剪枝
構建決策樹的四個算法
C5.0、CHAID、CART、QUEST
各種算法的比較
如何選擇最優(yōu)分類模型?
案例:商場酸奶購買用戶特征提取
案例:客戶流失預警與客戶挽留
案例:識別拖欠銀行貨款者的特征,避免不良貨款
案例:識別電信詐騙者嘴臉,讓通信更安全
人工神經網絡(ANN)
神經網絡概述
神經網絡基本原理
神經網絡的結構
神經網絡的建立步驟
神經網絡的關鍵問題
BP反向傳播網絡(MLP)
徑向基網絡(RBF)
案例:評估銀行用戶拖欠貨款的概率
判別分析(DA)
判別分析原理
距離判別法
典型判別法
貝葉斯判別法
案例:MBA學生錄取判別分析
案例:上市公司類別評估
最近鄰分類(KNN)
基本原理
關鍵問題
貝葉斯分類(NBN)
貝葉斯分類原理
計算類別屬性的條件概率
估計連續(xù)屬性的條件概率
貝葉斯網絡種類:TAN/馬爾科夫毯預測分類概率(計算概率)
案例:評估銀行用戶拖欠貨款的概率
支持向量機(SVM)
SVM基本原理
線性可分問題:最大邊界超平面
線性不可分問題:特征空間的轉換
維空難與核函數
分類模型優(yōu)化
集成方法的基本原理:利用弱分類器構建強分類模型
選取多個數據集,構建多個弱分類器
多個弱分類器投票決定
集成方法/元算法的種類
Bagging算法
Boosting算法
Bagging原理
如何選擇數據集
如何進行投票
隨機森林
Boosting的原理
AdaBoost算法流程
樣本選擇權重計算公式
分類器投票權重計算公式
市場細分模型
問題:我們的客戶有幾類?各類特征是什么?如何實現客戶細分,開發(fā)符合細分市場的新產品?如何提取客戶特征,從而對產品進行市場定位?
市場細分的常用方法
有指導細分
無指導細分
聚類分析
如何更好的了解客戶群體和市場細分?
如何識別客戶群體特征?
如何確定客戶要分成多少適當的類別?
聚類方法原理介紹
聚類方法作用及其適用場景
聚類分析的種類
K均值聚類(快速聚類)
案例:移動三大品牌細分市場合適嗎?
演練:寶潔公司如何選擇新產品試銷區(qū)域?
演練:如何評選優(yōu)秀員工?
演練:中國各省份發(fā)達程度分析,讓數據自動聚類
層次聚類(系統(tǒng)聚類):發(fā)現多個類別
R型聚類與Q型聚類的區(qū)別
案例:中移動如何實現客戶細分及營銷策略
演練:中國省市經濟發(fā)展情況分析(Q型聚類)
演練:裁判評分的標準衡量,避免“黑哨”(R型聚類)
兩步聚類
主成分分析
主成分分析方法介紹
主成分分析基本思想
主成分分析步驟
案例:如何評估汽車購買者的客戶細分市場
客戶價值分析
營銷問題:如何評估客戶的價值?不同的價值客戶有何區(qū)別對待?
如何評價客戶生命周期的價值
貼現率與留存率
評估客戶的真實價值
使用雙向表衡量屬性敏感度
變化的邊際利潤
案例:評估營銷行為的合理性
RFM模型(客戶價值評估)
RFM模型,更深入了解你的客戶價值
RFM模型與市場策略
RFM模型與活躍度分析
案例:淘寶客戶價值評估與促銷名單
案例:重購用戶特征分析
產品推薦模型
問題:購買A產品的顧客還常常要購買其他什么產品?應該給客戶推薦什么產品最有可能被接受?
常用產品推薦模型
關聯分析
如何制定套餐,實現交叉/捆綁銷售
案例:啤酒與尿布、颶風與蛋撻關聯分析模型原理(Association)
關聯規(guī)則的兩個關鍵參數
支持度
置信度
關聯分析的適用場景
案例:購物籃分析與產品捆綁銷售/布局優(yōu)化
案例:通信產品的交叉銷售與產品推薦
協(xié)同過濾
產品設計優(yōu)化
聯合分析法
離散選擇模型
如何評估客戶購買產品的概率
如何指導產品開發(fā)?如何確定產品的重要特性
競爭下的產品動態(tài)調價
如何評估產品的價格彈性
案例:產品開發(fā)與設計分析
案例:品牌價值與價格敏感度分析
案例:納什均衡價格
品牌價值評估
新產品市場占有率評估
產品定價策略及產品最優(yōu)定價
營銷問題:產品如何實現最估定價?套餐價格如何確定?采用哪些定價策略可達到利潤最大化?
常見的定價方法
產品定價的理論依據
需求曲線與利潤最大化
如何求解最優(yōu)定價
案例:產品最優(yōu)定價求解
如何評估需求曲線
價格彈性
曲線方程(線性、乘冪)
如何做產品組合定價
如何做產品捆綁/套餐定價
最大收益定價(演進規(guī)劃求解)
避免價格反轉的套餐定價
案例:電信公司的寬帶、IPTV、移動電話套餐定價
非線性定價原理
要理解支付意愿曲線
支付意愿曲線與需求曲線的異同
案例:雙重收費如何定價(如會費+按次計費)
階梯定價策略
案例:電力公司如何做階梯定價
數量折扣定價策略
案例:如何通過折扣來實現薄利多銷
定價策略的評估與選擇
案例:零售公司如何選擇最優(yōu)定價策略
航空公司的收益管理
收益管理介紹
如何確定機票預訂限制
如何確定機票超售數量
如何評估模型的收益
案例:FBN航空公司如何實現收益管理(預訂/超售)
信用評分卡模型信用評分卡模型簡介
評分卡的關鍵問題
信用評分卡建立過程
篩選重要屬性
數據集轉化
建立分類模型
計算屬性分值
確定審批閾值
篩選重要屬性
屬性分段
基本概念:WOE、IV
屬性重要性評估
數據集轉化
連續(xù)屬性最優(yōu)分段
計算屬性取值的WOE
建立分類模型
訓練邏輯回歸模型
評估模型
得到字段系數
計算屬性分值
計算補償與刻度值
計算各字段得分
生成評分卡
確定審批閾值
畫K-S曲線
計算K-S值
獲取最優(yōu)閾值
實戰(zhàn)篇
電信業(yè)客戶流失預警和客戶挽留模型實戰(zhàn)
銀行欠貸風險預測模型實戰(zhàn)
銀行信用卡評分模型實戰(zhàn)
結束:課程總結與問題答疑。
傅一航老師的其它課程
數據分析方法及生產運營實際應用 06.20
數據分析方法及生產運營實際應用【課程目標】本課程主要介紹數據分析在生產運營過程中的應用,適用于制造行業(yè)/保險行業(yè)的數據分析人員等。本課程的主要目的是,幫助學員了解大數據的本質,培養(yǎng)學員的數據意識和數據思維,掌握常用的統(tǒng)計分析方法和工具,以及生產、運營過程中的應用,并以概率的方式來進行決策,提升學員的數據分析及應用能力。本課程具體內容包括:數據決策邏輯,數據決
講師:傅一航詳情
大數據建模大賽輔導實戰(zhàn)【課程目標】本課程主要面向專業(yè)人士的大數據建模競賽輔導需求(假定學員已經完成Python建模及優(yōu)化--回歸篇/分類篇的學習)。通過本課程的學習,達到如下目的:熟悉大賽常用集成模型掌握模型優(yōu)化常用措施,掌握超參優(yōu)化策略掌握特征工程處理,以及對模型質量的影響掌握建模工程管道類(Pipeline,ColumnTransformer)的使用【授
講師:傅一航詳情
大數據時代下的精準營銷(1天) 06.20
大數據時代的精準營銷【課程目標】本課程從實際的市場營銷問題出發(fā),了解大數據在市場營銷領域的價值以及應用。并對大數據分析與挖掘技術進行了介紹,通過從大量的市場營銷數據中分析潛在的客戶特征,挖掘客戶行為特點,實現精準營銷,幫助市場營銷團隊深入理解業(yè)務運作,支持業(yè)務策略制定以及營銷決策。通過本課程的學習,達到如下目的:了解大數據營銷內容,掌握大數據在營銷中的應用。
講師:傅一航詳情
大數據時代下的精準營銷(1天-金融行業(yè)) 06.20
大數據時代的精準營銷【課程目標】本課程從實際的市場營銷問題出發(fā),了解大數據在市場營銷領域的價值以及應用。并對大數據分析與挖掘技術進行了介紹,通過從大量的市場營銷數據中分析潛在的客戶特征,挖掘客戶行為特點,實現精準營銷,幫助市場營銷團隊深入理解業(yè)務運作,支持業(yè)務策略制定以及營銷決策。通過本課程的學習,達到如下目的:了解大數據營銷內容,掌握大數據在營銷中的應用。
講師:傅一航詳情
大數據決策思維與商業(yè)模式創(chuàng)新,賦能企業(yè)增長【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如
講師:傅一航詳情
大數據思維與數字化轉型(2天) 06.20
大數據思維與應用創(chuàng)新【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數據基本
講師:傅一航詳情
大數據思維與應用創(chuàng)新(1天) 06.20
大數據思維與應用創(chuàng)新【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數據基本
講師:傅一航詳情
大數據思維與應用創(chuàng)新【課程目標】本課程主要幫助大家理解大數據的基本概念,著重探索大數據的本質,理解大數據的核心價值,以及掌握實現大數據價值的三個關鍵環(huán)節(jié),大數據解決業(yè)務問題的六個步驟,然后聚焦大數據的七大核心思維,最后,再用案例說明了大數據在各行業(yè)的應用場景。大數據思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數據基本
講師:傅一航詳情
大數據挖掘工具:SPSSStatistics入門與提高【課程目標】本課程為數據分析和挖掘的工具篇,本課程面向數據分析部等專門負責數據分析與挖掘的人士,專注大數據挖掘工具SPSSStatistics的培訓。IBMSPSS工具是面向非專業(yè)人士的高級的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能夠解決更復雜的業(yè)務問題,比如影響因素分析、客戶行為預測/精
講師:傅一航詳情
- [潘文富] 經銷商終端建設的基本推進
- [潘文富] 中小企業(yè)招聘廣告的內容完
- [潘文富] 優(yōu)化考核方式,減少員工抵
- [潘文富] 廠家心目中的理想化經銷商
- [潘文富] 經銷商的產品驅動與管理驅
- [王曉楠] 輔警轉正方式,定向招錄成為
- [王曉楠] 西安老師招聘要求,西安各區(qū)
- [王曉楠] 西安中小學教師薪資福利待遇
- [王曉楠] 什么是備案制教師?備案制教
- [王曉楠] 2024年陜西省及西安市最
- 1社會保障基礎知識(ppt) 21163
- 2安全生產事故案例分析(ppt) 20245
- 3行政專員崗位職責 19057
- 4品管部崗位職責與任職要求 16225
- 5員工守則 15465
- 6軟件驗收報告 15403
- 7問卷調查表(范例) 15114
- 8工資發(fā)放明細表 14558
- 9文件簽收單 14202